310 research outputs found

    Improved IEEE 802.11 point coordination function considering fiber-delay difference in distributed antenna systems

    Get PDF
    In this paper, we present an improved IEEE 802.11 wireless local-area network (WLAN) medium access control (MAC) mechanism for simulcast radio-over-fiber-based distributed antenna systems where multiple remote antenna units (RAUs) are connected to one access point (AP). In the improved mechanism, the fiber delay between RAUs and central unit is taken into account in a modification to the conventional point coordination function (PCF) that achieves coordination by a centralized algorithm. Simulation results show that the improved PCF outperforms the distributed coordination function (DCF) in both the basic-access and request/clear-to-send modes in terms of the total throughput and the fairness among RAU

    Plasma Lnc-UCA1/miR-138 axis as a potential biomarker for gestational diabetes mellitus and neonatal prognosis

    Get PDF
    Objectives: This study aimed to explore the correlations of Lnc-UCA1/miR-138 axis with gestational diabetes mellitus (GDM) risk and neonatal prognosis. Material and methods: First, the blood samples from sixty GDM patients and 60 healthy pregnant women were collected to detect the change of Lnc-UCA1/miR-138 axis by using real-time polymerase chain reaction (RT-qPCR). The clinical characteristics of GDM patients, healthy controls, and neonates were recorded. Then, the correlation analysis of Lnc-UCA1, miR-138, and Lnc-UCA1/miR-138 axis levels with clinicopathological characteristics was performed to explore the clinical value of Lnc-UCA1/miR-138 axis in GDM. Finally, the specificity and sensitivity of Lnc-UCA1, miR-138, and Lnc-UCA1/miR-138 axis for GDM diagnosis was evaluated using receiver operating characteristic (ROC) curves. Results: Our present study found that, when compared with healthy pregnancies, the expression levels of Lnc-UCA1 and miR-138 were increased and decreased, respectively, and Lnc-UCA1/miR-138 axis profile was elevated. Second, Lnc-UCA1 and Lnc-UCA1/miR-138 axis were positively correlated with fasting glucose, one-hour glucose, and two-hour glucose, while miR-138 showed the opposite trend. Furthermore, the area under the ROC curve (AUC) were 0.8196, 0.8021, and 0.8901 for diagnostic efficiencies of Lnc-UCA1, miR-138, and Lnc-UCA1/miR-138, respectively. In addition, higher profiles of Lnc-UCA1 were correlated with birth asphyxia of neonate. Conclusions: Circulating Lnc-UCA1/miR-138 axis might be involved in the pathogenesis of GDM and could function as a novel and effective biomarker for GDM risk and neonatal prognosis

    Yeast-produced subunit protein vaccine elicits broadly neutralizing antibodies that protect mice against Zika virus lethal infection

    Get PDF
    International audienceZika virus (ZIKV) infection is a serious public health concern due to its ability to induce neurological defects and its potential for rapid transmission at a global scale. However, no vaccine is currently available to prevent ZIKV infection. Here, we report the development of a yeast-derived subunit protein vaccine for ZIKV. The envelope protein domain III (EDIII) of ZIKV was produced as a secretory protein in the yeast Pichia pastoris. The yeast-derived EDIII could inhibit ZIKV infection in vitro in a dose-dependent manner, suggesting that it had acquired an appropriate conformation to bind to cellular receptors of ZIKV. Immunization with recombinant EDIII protein effectively induced antigen-specific binding antibodies and cellular immune responses. The resulting anti-EDIII sera could efficiently neutralize ZIKV representative strains from both Asian and African lineages. Passive transfer with the anti-EDIII neutralizing sera could confer protection against lethal ZIKV challenge in mice. Importantly, we found that purified anti-EDIII antibodies did not cross-react with closely related dengue virus (DENV) and therefore did not enhance DENV infection. Collectively, our results demonstrate that yeast-produced EDIII is a safe and effective ZIKV vaccine candidate

    Endothelium- targeted overexpression of KrĂƒÂŒppel- like factor 11 protects the blood- brain barrier function after ischemic brain injury

    Full text link
    Microvascular endothelial cell (EC) injury and the subsequent blood- brain barrier (BBB) breakdown are frequently seen in many neurological disorders, including stroke. We have previously documented that peroxisome proliferator- activated receptor gamma (PPARγ)- mediated cerebral protection during ischemic insults needs KrĂƒÂŒppel- like factor 11 (KLF11) as a critical coactivator. However, the role of endothelial KLF11 in cerebrovascular function and stroke outcome is unclear. This study is aimed at investigating the regulatory role of endothelial KLF11 in BBB preservation and neurovascular protection after ischemic stroke. EC- targeted overexpression of KLF11 significantly mitigated BBB leakage in ischemic brains, evidenced by significantly reduced extravasation of BBB tracers and infiltration of peripheral immune cells, and less brain water content. Endothelial cell- selective KLF11 transgenic (EC- KLF11 Tg) mice also exhibited smaller brain infarct and improved neurological function in response to ischemic insults. Furthermore, EC- targeted transgenic overexpression of KLF11 preserved cerebral tight junction (TJ) levels and attenuated the expression of pro- inflammatory factors in mice after ischemic stroke. Mechanistically, we demonstrated that KLF11 directly binds to the promoter of major endothelial TJ proteins including occludin and ZO- 1 to promote their activities. Our data indicate that KLF11 functions at the EC level to preserve BBB structural and functional integrity, and therefore, confers brain protection in ischemic stroke. KLF11 may be a novel therapeutic target for the treatment of ischemic stroke and other neurological conditions involving BBB breakdown and neuroinflammation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155919/1/bpa12831_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155919/2/bpa12831.pd

    Changes in soil fertility and microbial communities following cultivation of native grassland in Horqin Sandy Land, China: a 60-year chronosequence

    Get PDF
    Background: Grassland conversion to cropland is a prevailing change of land use in traditionally nomadic areas, especially in the Mongolian Plateau. We investigated the effects of grassland conversion followed by continuous cultivation on soil properties and microbial community characteristics in Horqin Sandy Land, a typical agro-pastoral transition zone of Northern China. Soil samples were collected from the topsoil (upper 20 cm) across a 60-year cultivation chronosequence (5, 15, 25, 35 and 60 years) and unconverted native grassland. Soil physico-chemical properties were determined and high-throughput sequencing was used to assess microbial community diversity and composition. Results: Grassland cultivation resulted in changes to soil properties in both the short and longer term. Initially, it significantly increased soil bulk density (BD), electrical conductivity (EC), soil total nitrogen (TN), available phosphorus (AP) and available potassium (AK) concentrations, while reducing soil water content (SWC) and soil organic carbon content (SOC). Over the next 35–55 years of continuous cultivation, the trend for most of these characteristics was of reversion towards values nearer to those of native grassland, except for SOC which remained highly depleted. Cultivation of grassland substantially altered soil microbial communities at phylum level but there was no significant difference in microbial α-diversity between native grassland and any cropland. However, soil bacterial and fungal community structures at phylum level in the croplands of all cultivation years were different from those in the native grasslands. Heatmaps further revealed that bacterial and fungal structures in cropland tended to become more similar to native grassland after 15 and 25 years of cultivation, respectively. Redundancy analysis indicated that SOC, EC and BD were primary determinants of microbial community composition and diversity. Conclusions: These findings suggest that agricultural cultivation of grassland has considerable effects on soil fertility and microbial characteristics of Horqin Sandy Land. Intensive high-yield forage grass production is proposed as an alternative to avoid further native grassland reclamation, while meeting the grazing development needs in the ethnic minority settlements of eco-fragile regions
    • 

    corecore